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ABSTRACT
A wireless sensor network consists of autonomous devices
able to collect various data from the area that surrounds
them. However, the resources associated with sensors are
limited and, thus, in order to guarantee a longer life of all
the network components, it is necessary to adopt energy-
savings methods. This paper, considering that the transmis-
sion phase is the main cause of energy dissipation, presents
an approach aimed to save energy by capturing and aggre-
gating signals instead of sending them in raw form. Anyway,
aggregation should not imply the loss of useful data. For this
reason, information about possible outliers is preserved and
the aggregated values have to satisfy data quality (i.e., ac-
curacy, precision, and timeliness) requirements. In order to
show the correctness and validity of the proposed method,
it has been tested on a real case study and its performance
has been compared with two other consolidated approaches.

1. INTRODUCTION
Sensors are getting more complex and they must be treated

as equal partners in future distributed database systems as
they can store, manipulate and communicate information.
In fact, each sensor produces a continuous stream of data
which flows from the sensor node itself to the consumer node
- usually one or more base stations - possibly by multi-hop
transmission.
However, a sensor node is not a long-life product: its

small size implies limitations on the associated resources.
In particular, it is necessary to deal with two main tech-
nological issues, such as memory and power amount. On
the one hand, memory can only store few data for a limited
time span and it is necessary to periodically transfer data
to a larger storage device. On the other hand, the life of
on-board batteries is limited and transmission is the most
power consuming function. These constraints conflict with
each other since the need of transmitting data in order to

free the sensor local memory requires frequent transmissions
of long data sequences which are highly power consuming.
Thus, we need to compact incoming data in order to opti-
mize the local storage and transmit only few value-added
data to the parent nodes. Data amount reduction is one ef-
fective method to use limited resources of WSNs. Anyway,
it is also necessary to consider that these methods negatively
impact on the quality of transmistted information. In fact,
data aggregation implies the loss of values and thus the loss
of precision. This could be a relevant issue especially in con-
texts in which also small signal variations are important to
understand the phenomenon. A good aggregation method
should be able to deal with the energy saving/data qual-
ity trade-off. It is important to contemporarily satisfy data
quality requirements and to maintain the error introduced
in reducing data below a specified threshold.
In this paper, we illustrate an adaptive data aggregation

algorithm that tries to satisfy both data quality and energy
saving requirements. The initial description of the algorithm
has been introduced in [3]. In this paper, we perform a step
forward by improving the algorithm performance and pro-
viding: (i) a validation of the algorithm by using a real case
study; (ii) a comparison with other similar algorithms. The
paper is organized as follows. Section 2 describes the main
contributions about data aggregation in sensor networks in
order to show the novel aspects of our approach. Section 3
introduces the main data quality criteria to be considered for
data aggregation. Section 4.1 defines the context in which
our algorithm is proposed. Details about the algorithm and
its performance are provided in Section 4.2, Section 5 dis-
cusses the experimental testbed that has been setup for the
validation of the approach. Finally, Section 6 discusses some
conclusive remarks.

2. RELATED WORK
Data compression, and in particular data reduction, is a

well-established research field, but sensor networks present
a context in which new design issues have to be addressed
[17]. In fact, the small code and data memories, and the
primary focus on energy, call for new approaches [11]. In
this paper we focus on a specific data reduction technique:
data aggregation. Data aggregation is the process in which
information is gathered and expressed in a summary form.
In the literature, a large variety of aggregation algorithms
have been proposed. Most of existing data aggregation algo-
rithms are, however, not feasible for WSNs owning to their
size and complexity. Within the WSNs community, there



are several contributions (e.g., [6]), where authors address
the analysis of high spatial correlation in data from fixed
sensors in dense networks. Here, the context is specific and
the addressed problems have particular characteristics and
criticisms. Our approach aims to handle heterogeneous data
sources and to aggregate any data stream characterized by
various and unexpected trends.
Data reduction has been mostly studied to enable in-

network processing. In-network processing is the general
term used for techniques that process data on a node or
group of nodes before forwarding it to the user. The goal
of in-network processing of data streams is to select and
give priority to reporting the most relevant data gathered
[10]. Here, spatial and temporal aggregation techniques are
widely used. Spatial aggregation deals with data redun-
dancy in a same physical area. Contributions in this field
propose models to discover similar values and to aggregate
them by using specific functions [20]. In [8], similar values
compose the base signal used to forecast and evaluate the
collected data. In spatial compression analysis, the contribu-
tions about research on sensors’ communication paradigms
are extremely relevant (e.g., [13]).

Temporal aggregation is suitable for all the contexts in
which the main goal is to detect data changes over time. In
this scenario, one of the main contribution is a lightweight
linear approach [4] [21]. The linear aggregation algorithm
provides a good balance between maximizing compression
and minimizing processing complexity for each node. The
approach just considers different measures taken at differ-
ent time instants. Each value is compared with the previous
one and it is transmitted only if the measure is significantly
different. This algorithm is suitable for all the contexts in
which phenomena are quite stable and data are character-
ized by linear trends. In fact, in case of unstable data, the
approach would support the communication of all the mea-
sured values. The algorithm proposed in Section 4 aims to
detect data changes over time as the linear aggregation algo-
rithms, but it maximizes the compression ratio even when
the data trend changes frequently. Therefore, it is not so
strictly dependent on the phenomenon characterization.
The proposed aggregation algorithm is also based on the

concept of time series as [5] [25] [18]. In [5], the authors
propose to perform on-line regression analysis over time se-
ries on data streams. Autoregressive models built on each
sensors are instead used in [25] to forecast time series and
approximate the value of sensors readings. Lazaridis and
Mehrotra [18] also propose to fit models to time series, but
they try to improve system performance, rather than doing
regression analysis. We refer to this work, since our model
is focused on both quality requirements satisfaction and en-
ergy saving. Our model divides the time series in windows
and introduces the concept of continuity interval in order
to detect permanent data trend changes. Furthermore, our
model deals with all types of trends and not only with a lim-
ited set as the algorithm proposed in [18]. We also propose
an adaptive mechanism to change the measure frequency in
case of very irregular trends, so increasing the system band-
width. The adaptation in data stream management is driven
by data quality requirements. Several contributions in the
literature adopt a similar approach by considering a different
set of dimensions; for example, [24] monitors the processing
delay to assure data freshness. The total response time is
also checked in [12] to optimize the overall QoS performance

according to the network condition and work load on-line.
Furthermore, quality has been often analysed together with
costs; typically, for WSNs the most important component
of cost typically is the energy consumed in providing the
requested data. In turn, this is dominated by the energy re-
quired to transport messages through the sensor field. This
cost versus quality (e.g., data accuracy) trade-off has been
thoroughly analysed in in-network aggregation research area
[26][1][23]. Only some contributions deal with data quality
analysis on a single sensor. Most of them use data qual-
ity dimensions to clean data streams [16], while only a few
papers consider quality as an important factor in data ag-
gregation. A relevant framework is proposed in [15] in which
the precision dimension is used to filter data by using the
Kalman filter. In this way they build a flexible system that
is able to automatically adapt the reference model to the
real-world signal. Authors discard outliers and try to de-
tect the value trend. As for the adaptability to a variety
of different types of signals, the contribution in [15] aims
to achieve a similar level of flexibility as proposed in this
paper. Anyway, differently from [15][16], in our approach,
outliers are important elements of the data stream to con-
sider and store since scientific researchers deem they can be
very useful in studying and interpreting natural phenomena.
In addition, we consider other data quality dimensions (i.e.,
accuracy and timeliness) to improve the efficiency of the al-
gorithm and further reduce the need for transmitting data
to the base station.

3. DATA AGGREGATION: QUALITY RE-
QUIREMENTS

The quality of the data provided by a sensing application
is a combination of accuracy and delay [26]. Our approach
is based on the idea that data quality measures can be used
by the base station as the main driver for the selection of the
most relevant and thus useful sensors’ data and also for the
evaluation of the reliability of the received data. In fact, on
the one hand the base station could define quality require-
ments to influence the behaviour of the sensors involved in
the network: each sensor node just collects and sends data
in order to satisfy all the quality requests. On the other
hand, the base station could evaluate the trustworthiness
of the different sensors by assessing the correctness and up-
dateness of the incoming data.
The most relevant data quality dimensions in the WSN

scenario are Accuracy, Precision and Timeliness. Accuracy
is usually defined as the degree of conformity of a measured
or computed quantity to its actual (true) value. Accuracy
is related to precision that is the degree to which repeated
measurements show the same or similar results [14]. The
impact of these two dimensions on data stream manage-
ment is discussed in Section 4.1. Timeliness is defined as
the property of information to arrive early or at the right
time. Timeliness is usually measured as a function of two
elementary variables: currency and volatility [9][19]:

T imeliness = max(1 − Currency/V olatility; 0)s

where the exponent s is a parameter necessary to control the
sensitivity of timeliness to the currency-volatility ratio. In
the analysed context, currency can be defined as the interval
from the time the value was sampled to the time instant
at which data are sent to the base station. Volatility is a
static information that indicates the amount of time units



(e.g., seconds) during which data remain valid. Volatility
is usually associated with the type of phenomena that the
system has to monitor and depends on the change frequency.
Timeliness constraints are one of the main drivers for data
processing and transmission. In fact, timeliness constraints
could limit the time validity of sensors’ data and can force
the transmission of data before the scheduled time instant.
When users submit queries, they have to define their quality
requirements. As an example, the PERLA language [22]
allows a conditional execution of operations on the basis of
quality parameters.
Moreover, it is necessary to consider that the design of

a sensor network and of the related algorithms are tailored
for a particular type of applications and thus for the type of
expected signal. WSNs can be used for data collection pur-
poses in situations such as environmental monitoring, habi-
tat monitoring surveillance, equipment diagnostics, disaster
management, and emergency response [7]. The idea behind
the algorithm presented in this paper is to use data qual-
ity dimensions to design an adaptive aggregation algorithm
able to work effectively for any type of signal.

4. THE DATA AGGREGATION ALGORITHM

4.1 The system and the data structure
The input data stream can be seen as a continuous flow

of real-time data tuples of the form <sensor-id, time stamp,
value> coming to the sensor’s input buffer. As in many real-
time systems, we can suppose that the Input Buffer (IB) is
actually split into two separate storage areas (i.e., IB1 and
IB2). Data are fed to IB1 until either it is full or timeliness
requirements force data processing, then input is switched
to IB2 while data in IB1 are transferred to the compression
engine and then to the output buffer. The switching process
is repeated and data are processed from IB2.
In this way, the potentially infinite data stream is reduced,

with a windowing approach, to a sequence of finite time-
ordered data sets on each of which the compression algo-
rithm can work. In our approach, the main window can be
further partitioned into smaller sub-windows (see Figure 1)
in which values that are considered similar can be aggre-
gated by computing their average.
In particular, each sensor has a sampling period that de-

fines the time instant ti in which data are acquired. Con-
sidering these time instants, we define a value series V =<
v[1], v[2], ...v[n] > as a collection of values observed in sub-
sequent n time instants. The maximum number of measure
points N coincides with the cardinality of data in the in-
put buffer. Sub-windows are characterized by their width
W and height H. The former coincides with the number of
points in a sub-windows, it expresses the compression factor
and depends on the data trend variability and/or timeliness
requirements. The larger the number of points in the win-
dow, the larger the compression we get, but also the larger
the transmission delay of time sensitive data. Notice that
a window with a single point does not compress data and
thus a reduction of the window’s width is tantamount to
increase the measure frequency (system bandwidth) in or-
der to catch sudden changes. The height H expresses the
accuracy that is the biggest difference between two mea-
sure points in a window and controls the measure and the
robustness in finding outlier values. An outlier is a value

which departs from the normal trend (see for example the
first window in the Figure 1a).
The aggregation algorithm permits to transfer only the

average values and the outliers to the base station. The
average values are sent together within the time stamp of
the last received value while the outliers are associated with
the time stamp in which they are received. Note that, us-
ing this approach, the information about the time stamp is
relevant in order to monitor the timeliness dimension and
also to enable the re-building of the incoming signal when
aggregated data are received by the base station. Further-
more, in some monitoring applications (e.g., earthquakes)
the relative timing of the data that are detected from dif-
ferent sensors becomes fundamental since the correctness of
the data synchronization directly impacts on the diagnose
effectiveness.

4.2 Description of the algorithm
The algorithm is based on the observation that an out-

lier could mean either measurement errors (the circled point
the first window in Figure 1a) or a change in the measured
windows as in the last two sub-windows in Figure 1a. The
two cases can be automatically distinguished by considering
the precision value. Indeed, if the values are not accurate,
but precise, it means that values are not similar to the ref-
erence value but they are characterized by a small standard
deviation. In this case a change in the measured system has
occurred. It is also possible to consider the case in which
data values are not accurate nor precise and this occurs when
the trend in the measured system is very irregular. A mea-
surement error, on the other hand, is an occasional event
and the values are still judged as accurate and precise. It is
possible to distinguish different situations along the values
of the two dimensions (εacc, εprec) (see Figure 1):

1) Expected trend : the trend can be defined as regular
since values are precise and accurate (see the first two
windows in Figure 1a);

2) Slow change: the trend is characterized by an unex-
pected, but lasting and small variation. Values are
still precise, but not accurate (see the third and fourth
windows in Figure 1a);

3) Irregular trend : the trend is characterized by unex-
pected and discontinuous variations. Values are not
precise when the variation occurs, but they can be both
accurate or inaccurate. The irregular trend could be
further classified as (i) Oscillatory/bursty trend (see
the second window in Figure 1b) if the values are not
precise also in the subsequent time instants; (ii)Step
change if the trend is characterized by an unexpected,
but lasting and large variation in a way that preci-
sion requirements are satisfied again sometimes after
the instant at which the variation occurs (see the third
and fourth windows in Figure 1b).

Note that any data stream can be described as the combi-
nation of the described trends and of outlier values. Out-
liers are identifiable in all cases in which unexpected and
not lasting variations occur. In this case, either accuracy
or precision requirements are not satisfied when the trend
change occurs, but after that the trend turns back to a sta-
ble behaviour. Outliers should not be ignored since they



could hide significant information. In fact, analysing his-
torical series, outliers sometimes reveal periodical- and thus
systematic-irregularities that can not be inferred from a lo-
cal and limited analysis. The identification and analysis of
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Figure 1: Possible value trends

the trends that compose the data stream is the first step
of the aggregation algorithm briefly described in this paper.
More details of the algorithm can be found in [3]. Aggrega-
tion operations aim to identify a set of values that can be
considered a good approximation of the sensed data stream.
The algorithm is based on the evaluation of the similarity

of the incoming data with the previous data values acquired
in the sensing activity. Similarity degree depends on the
precision and accuracy assessment. Checking these two di-
mensions, the algorithm is able to recognize three different
situations described in the following also with excerpts of
the corresponding pseudocode:

• Data follow the expected trend : the average of all the
stored values except for outliers is calculated.

1. CASE (< εacc, < εprec)
2. IF number of analysed values=W AND Number

of outliers < L THEN t[z]=AVG(Acceptable values);
Increment z

3. ELSE IF Number of outliers > L

4. THEN T= 〈t1, t2, ...tz〉= V= 〈v1, v2, ...vw〉
5. ELSE Analyse new value and GO TO (1)

• Data undergo a slow change: when the algorithm de-
tects an outlier, it controls if it is associated with a
permanent or transient data trend change. Such evalu-
ation is performed on the basis of a specific parameter
called continuity interval (C). This parameter speci-
fies the number of values that the algorithm analyzes
in order to define the kind of trend. If the values con-
tained in C are precise and not accurate, the aggre-
gation algorithm classifies the trend as "slow change"
and calculates the average of the values stored before
the exception and recalculates the expected value vref
along the last inaccurate values. Otherwise, inaccurate
values are transmitted to the base station as outliers.

1. CASE (> εacc, < εprec)
2. Variable initializations: the number of unexpected

values, the time instant in which the exception occurs
(Te)

3. O[j]=vw *storage of the outlier*
4. Indata[w]= vw+1

5. WHILE accuracy > εacc AND precision < εprec

6. INCREMENT the number of unexpected value
and the number of outliers

7. O[j]=vw

8. IF number of analysed values=W AND number
of subsequent unexpected values = C

9. THEN t[z]=AVG(Acceptable values arrived be-
fore Te); Increment z ;

10. t[z]=AVG(Acceptable values arrived after Te);
Increment z;

11. vref=AVG(Acceptable values arrived after Te)
12. ELSE IF number of analysed values=W AND num-

ber of subsequent unexpected values<C
13. THEN t[z]=AVG(Acceptable values); Incre-

ment z;
14. ELSE IF number of subsequent unexpected

values = C
15. THEN t[z]=AVG(Acceptable values arrived

before Te); Increment z;
16. vref=AVG(Acceptable values arrived af-

ter Te)
17. Delete outliers from O[j] to O[j-C]
18. GO TO 1
19. else Indata[w]=vw+1 and GO TO 1

• Data are characterized by an oscillatory trend or bursts:
the algorithm recognizes that the number of outliers is
greater than a specific threshold (L) and classifies the
trend as very irregular. Therefore, all the values are
transmitted, thus saving the additional computation
energy. Moreover, in such a case, the measurement
frequency of the sensor should be increased (and the
window width consequently reduced) in order to iden-
tify the small data variations. In fact, on the basis
of the received data, the base station must reconsider
the context conditions and increase the measurement
frequency for the considered sensor.

1. CASE (< εacc, > εprec) OR (> εacc, > εprec)
2. O[j]=vw

3. IF number of analysed values=W AND Number
of outliers < L THEN t[z]=AVG(Acceptable values);
Increment z;

4. ELSE IF Number of outliers > L

5. THEN T= 〈t1, t2, ...tz〉= V= 〈v1, v2, ...vw〉
6. ELSE Analyse new value and GO TO (1)

4.3 Energy evaluation
In sensors, energy drain is caused when using any of the

sensor equipment, including (i) powering its memory, (ii)
using its CPU, (iii) sending/receiving data. The rates of
energy consumption for these operations are sensor-specific.
Communication is often the major cause of energy drain in
sensors and hence, in the interest of extending the sensor’s
life, communication must be limited. In details, each sen-
sor is characterized by different energy factors: a) et:energy



consumption for the transmission of one byte; b) ee: energy
consumption for processing one instruction; c) Et: energy
consumption for data transmission to the base station; d)
Ee: energy consumption for processing analysis and aggre-
gation algorithms; e) Etot: total energy consumption of the
sensor node, calculated as Et + Ee. The model presented in
the following aims to minimize the total energy consumption
by considering that et�ee. In fact, the algorithm analyses
the values in the data stream in order to define if it is pos-
sible to communicate to the base station only the aggregate
values and the outliers. By considering Z aggregate values
and J outliers, the algorithm is efficient if the output is com-
posed by (Z+J) values instead of N where (Z+J)� N:

et ·N > Ee + et · Z + et · J

4.4 Cost-quality tradeoffs
The outputs of the algorithm, and thus the number of

values transmitted at the base station and the energy con-
sumed strictly depend on the input parameters. Precision,
accuracy, timeliness and the continuity interval values can
be modified in order to obtain higher or lower quality. In
fact, high precision and accuracy requirements are associ-
ated with a higher number of values transmitted. There-
fore the higher the quality required the higher the energy
consumed. Quality and timeliness requirements have to be
properly designed along with the analysed context. In fact,
stable and not critical phenomena need not a high quality
level, increasing energy saving benefits. Irregular and criti-
cal contexts, on the other hand, require high quality results
since even the smallest system changes should be detected
and transmitted.
Note that it is also possible to influence the number of

outliers and the accuracy of compression by defining a suit-
able continuity interval (C) value. In fact, a high C value
increases the probability of classifying values as outliers in-
stead of trend changes. Thus, the probability to send all the
N values increases as well.
Figure 2 shows the list of input parameters. The possi-

bility of choosing these values gives our algorithm a great
flexibility in adapting to different application environments.
Obviously their choice must be made, in each case, on the
basis of a previous knowledge of the application and its op-
erating environment or of experimental tests. A further de-
velopment can be the usage of learning techniques to auto-
matically adapt the input parameters set-point values.

5. TESTBED EXPERIMENTS
An experimental testbed has been setup in order to eval-

uate the performance of the proposed algorithm in terms
of functional features and energy consumption properties;
results have been evaluated by implementing the algorithm
on a sensor and measuring the energy consumed during the
elaboration phase. We have used two real data sets, named
A and B, in which the former represents the absorption spec-
trum of the acetylene C2N2 measured by means of a laser
spectrograph method set up to 1.54 µm and the latter de-
scribes the absorption spectrum in which the measures are
expressed in frequency modulation. Mica2 sensors have been
used. These sensors are powered by two AA alkaline bat-
teries and are built around an Atmel Atmega 128L micro-
controller circuit and the CC1000 integrated radio circuit.

Mica2 sensors use the operating system TinyOS that is pro-
grammed by using the event-oriented language nesC.
In order to experimentally measure and record the electri-

cal energy absorbed by the sensor over time, we used a DAS
(Data Acquisition System) capable of A/D conversion and
recording of two voltage signals during the sensor operation:
a first voltage signal (v1)1 is taken directly at the sensors
power supply input pins; a second (v2) voltage signal is the
one across a series r = 10Ω resistance, connected between
the power supply and the Mica2 "load", used to convert the
current supplying the sensor into a corresponding easy to
acquire voltage signal. Even if one considers Vbatt changing
with the circuit absorption, the electrical power and energy
consumed by the Mica2 sensor can be properly measured by
the product of current and voltage over the sensor and by
its time integral, respectively. Henceforth, we did measure
the circuit power consumption as P (t) = i(t) · v1(t) and the
corresponding electric energy consumption:

E(t) =

∫ t

t0=0

[v2(t′)/r] · v1(t′)dt′

where t’ is just the integration variable, t0 = 0 is an ar-
bitrary starting time for measurement/integration and t is
either the current time or the whole/final observation time.
The algorithm code is composed of two main phases: data

acquisition and evaluation and data transmission. The for-
mer phase gets the input data and evaluate them in or-
der to define the type of trend that characterizes the data
stream. Aggregate values and outliers are stored in an out-
put buffer until the transmission phase has to be performed.
As described in the previous sections, the transmission is re-
quired when either the input buffer is complete or certain
timeliness requirements are needed. In the experiments the
output buffer has been physically realized, and aggregated
data and/or outliers have been sent at the end of the win-
dow. However, the values have not been grouped in one
transmission packet, but we used a packet for each tuple.
The algorithm has been implemented and tested in order to
check its correctness and efficiency; its footprint - 11 kByte
of RAM and 1 kByte of ROM - is rather small and this prop-
erty is one of the significant factors for storage management
in small sensors, but scarcely considered in the literature.

5.1 Experimental results
For the evaluation of the data set A, the values shown in

Figure 2 have been used as parameter input data. Parameter
values have been selected on the basis of the trend charac-
teristics. In particular, vref has been defined by calculat-
ing the average of the first subset of values in the analysed
trend. The variability of the trend has been instead con-
sidered to determine suitable values of εacc and εprec. The
window width W has been established in order to have a
significant number of windows to work with. The definition
of the window width influenced the setting of the continuity
interval C that includes a small number of values in order
to increase the effectiveness of the algorithm. In fact, the
smaller the continuity interval the lower is the sensitivity of
the algorithm in the trend changes and outliers detection.
Figure 3 represents the values of data set A together with

the values transmitted by our algorithm (dotted line). Note

1Unlike in the rest of the paper, in this subsection vi denotes
an electric voltage value



Name Value
Number of values 150

vref 0.18
εacc 0.02
εprec 1
W 30
C 4
L W/2

Figure 2: Experimental Input data for data set A  
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Figure 3: Values of the data set A compared with
the values produced by the proposed algorithm

that our trend is calculated on the basis of the transmit-
ted aggregate values and the outliers. Figure 4 describes
the absorbed current and the energy consumed. The energy
spent by the algorithm in data processing and transmission
is respectively shown by the slope changes in the lower di-
agram, the leftmost being the energy spent in downloading
the program into the sensor.

 

Figure 4: Energy consumption by the algorithm

The algorithm performance has been compared with other
two approaches proposed in the literature and discussed in
Section 2, namely [18] and [21]. Both approaches are based
on the satisfaction of accuracy constraints and work quite
well in the analysis of phenomena that are quite stable or
data which are characterized by a linear trend.
The comparisona between algorithms have been based on

three main criteria:

• Compression rate: the degree with which data have

been aggregated. This dimension can be assessed as
the ratio between the number of values transmitted
and the number of data received. Note that the higher
the compression rate the higher the probability to loose
information about the original trend.

• Energy savings: the degree with which the aggregation
allows sensors to save energy with respect to the case
in which all the original values are sent to the base
station.

• Correctness: the degree with which the aggregated
data allow the base station to retrieve the original
trend. In order to evaluate the correctness, we have
evaluated all the values v′n that the base station can
retrieve by using a linear interpolation between the
received aggregated data. On the basis of these esti-
mated values, it is possible to assess the achieved accu-
racy level in terms of Mean Absolute Error (MAE) and
the related Mean Absolute Percentage Error (MA%E)
that consider the average error calculated as the differ-
ence between the computed values and the real ones.

Figure 5 describes the comparison of the three algorithms
on the basis of the energy savings and the compression rate
while Figure 6 describes the comparison of the three algo-
rithms on the basis of the correctness criteria.
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Figure 5: Comparison among the three aggregation
algorithms

MAE MA%Er
Authors 0.0021 1.30%

Lazaridis et al. 0.0030 1.88%
Schoellhammer et al. 0.0010 0.63%

Figure 6: Comparison of correctness results

Since our algorithm aims to improve both energy saving
and data quality aspects, we can state that it has better
performance than the algorithm by Lazadiris et al. [18].
Furthermore at a first sight, the algorithm by Schoellham-
mer [21] has a better performance than ours, but a deeper
analysis shows that in case of non linear input data our al-
gorithm provides results characterized by a higher quality.
In fact, we have conducted a deeper and accurate analysis
to confirm the performances of our algorithm. We have set
the algorithm with the parameters in Figure 2 and we have
calculated the error in the intervals in which data are charac-
terized by a higher variance. Three areas can be identified:
(a) the set of values arrived between t=1 and t=10; (b) the
set of values arrived between t=65 and t=86; (c) the set of
values arrived between t=139 and t=150. The evaluation of
the correctness in these three intervals provides the results
in Figure 7.



Authors Schoellhammer et al.
(a) 0.0008 0.0009
(b) 0.0011 0.0014
(c) 0.0008 0.0009

Figure 7: Comparison of MAEs in case of non linear
trends

For the evaluation of the data set B, the values shown
in Figure 8 have been used as parameters input data. The
parameters have been defined following the same method
used to define the parameters of the experiments based on
the first data set (see Figure 2).

Name Value
Number of values 150

vref 0
εacc 0.3
εprec 1

C 4
W 30
L W/2

Figure 8: Experimental Input data for data set B
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Figure 9: Values of the second data set

In Figure 9, the values of data set B are represented to-
gether with the values transmitted by our algorithm (dotted
line). Data set B is characterized by a higher variance than
the previous case and our algorithm improves its own perfor-
mance compared with the other two considered algorithms.
Figure 10 describes the comparison of the three algorithms

on the basis of the energy savings and the compression rate
while Figure 11 describes the comparison of the three algo-
rithms on the basis of the correctness criteria.
In this case, the higher variance that characterizes the

trend makes the algorithm proposed in this paper and the
algorithm proposed by Schoellhammer et al. almost equiva-
lent. This experiment allows us to state that our algorithm
is able to guarantee the quality of the output in linear and
non linear trend and irregularities do not worsen its perfor-
mance.
Looking at the results obtained by running the three al-

gorithms on the first and the second data sets, it is possible
to notice that the MAE differences in our algorithm appear
to be mainly affected from inaccuracies in the horizontal
dimension (i.e., time) while for the Schoellhammer et al. al-
gorithm, the MAE differences appear to be mainly affected
from inaccuracies in the vertical dimension (i.e., voltage).
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Figure 10: Comparison among the three aggregation
algorithms

MAE MA%E
Authors 0.2234 48.20%

Lazaridis et al. 0.3956 144.06%
Schoellhammer et al. 0.1725 55.96%

Figure 11: Comparison of correctness results

This is due to the fact that our approach transmits the ag-
gregated values at the end of a time window and this implies
delays in the transmission. This also confirms that the used
aggregation function provides accurate values while using
the Schoellhammer et al. algorithm the errors are mainly
due to the aggregation evaluation and the transmission is
timely, but less accurate.
It is possible to summarize the results obtained by the pre-

vious analysis by metrics proposed in Figure 12. From these

Compression
rate/ En-
ergy saving

MA%E/
Compres-
sion rate

MA%E/
Energy
saving

Authors 2.5 0.64 1.6
Lazaridis et al. 1.55 1.77 2.77
Schoellhammer et al. 2.84 0.615 1.75

Figure 12: Summary of the comparison results

results, it is possible to infer that each algorithm has some
advantages on the others. [18] has a good trade-off between
compression rate and energy saving while [21] presents the
best results in terms of errors and compression rate. The al-
gorithm presented in this paper is characterized by the best
trade-off between errors and energy saving. This means that
we succeeded in guaranteeing a defined quality degree saving
energy.

6. CONCLUSIONS AND FUTURE WORK
Data management in WSNs must take care of energy drain

by optimizing transmission operations among sensors, which
are the most energy consuming, while keeping their quality
as high as possible. In this paper, we have presented a data
aggregation algorithm characterized by adaptivity features
based on quality and energy saving requirements. Further-
more, the algorithm is designed to improve the capabilities
of a single sensor to mine the input data and decrease its
dependency on the base station. Experimental results dis-
cussed in Section 5 show the correctness of the algorithm
and its efficiency. The comparison with other two aggre-
gation algorithms proposed in [18] and [21] shows that the
algorithm proposed in this paper is more effective in case
of non-linear and irregular trend. In fact, especially in case
several outliers occur, the proposed approach gives impor-
tance to all the changes by sending all the information about



unexpected behaviours to the base station. This is an in-
novative aspect with respect to other algorithms proposed
in the literature in which the aggregation performs quite
well with linear trends, but it worsens when outliers or non
linear/sudden changes occur.
The energy savings in our approach could be further op-

timized by considering that so far, we simulate the separate
transmission of the aggregate values and outliers. Actually,
the transmission could be performed at the end of the win-
dow processing by using packet based protocols. The sensor
stores the values to be transmitted and sends them in one
or more packets at the end of the analysed window. In this
case higher compression could be obtained, possibly limited
by the consideration of timeliness-energy tradeoffs [2]. As
to this issue, we have already performed some experiments
using TinyOS and we have initially observed that, in terms
of energy, it is better to use a packet for each tuple instead of
bigger packets that include more tuples since, in the latter
case, more computation and a longer transmission time is
needed. Anyway, further experiments are to be performed.
Further work will also improve the algorithm by focusing

on the definition of an optimization model for the maximiza-
tion of energy savings through the automatic definition of
the controllable algorithm parameters (e.g., accuracy, preci-
sion, continuity interval).
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